Stream Data Mining and Comparative Study of Classification Algorithms
نویسندگان
چکیده
Stream Data Mining is a new emerging topic in the field of research. Today, there are number of application that generate Massive amount of stream data. Examples of such kind of systems are Sensor networks, Real time surveillance systems, telecommunication systems. Hence there is requirement of intelligent processing of such type of data that would help in proper analysis and use of this data in other task even. Mining stream data is concerned with extracting knowledge structures represented in models and patterns in non stopping streams of information [1] . Such massive data are handled with software such as MOA (Massive Online Analysis) or other open sources like Data Miner. In this paper we present some theoretical aspects of stream data mining and certain experimental results obtained on that basis with the use of
منابع مشابه
Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart Diseases
Today, a great deal of data is generated in the medical field. Acquiring useful knowledge from this raw data requires data processing and detection of meaningful patterns and this objective can be achieved through data mining. Using data mining to diagnose and prognose heart diseases has become one of the areas of interest for researchers in recent years. In this study, the literature on the ap...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملApplication of Data-Mining Algorithms in the Sensitivity Analysis and Zoning of Areas Prone to Gully Erosion in the Indicator Watersheds of Khorasan Razavi Province
Extended abstract 1- Introduction Gully erosion is one of the most important sources of sediment in the watersheds and a common phenomenon in semi-arid climate that affects vast areas with different morphological, soil and climatic conditions. This type of erosion is very dangerous due to the transfer of fertile soil horizons, and the reduction of water holding capacity also is a factor for s...
متن کاملStream Data Mining: Platforms, Algorithms, Performance Evaluators and Research Trends
Streaming data are potentially infinite sequence of incoming data at very high speed and may evolve over the time. This causes several challenges in mining large scale high speed data streams in real time. Hence, this field has gained a lot of attention of researchers in previous years. This paper discusses various challenges associated with mining such data streams. Several available stream da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012